799 research outputs found

    Logic, Probability and Learning, or an Introduction to Statistical Relational Learning

    Full text link
    Probabilistic inductive logic programming (PILP), sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed and they are being applied on applications in network analysis, robotics, bio-informatics, intelligent agents, etc. This tutorial starts with an introduction to probabilistic representations and machine learning, and then continues with an overview of the state-of-the-art in statistical relational learning. We start from classical settings for logic learning (or inductive logic programming) namely learning from entailment, learning from interpretations, and learning from proofs, and show how they can be extended with probabilistic methods. While doing so, we review state-of-the-art statistical relational learning approaches and show how they fit the discussed learning settings for probabilistic inductive logic programming.status: publishe

    Event-based simulation of interference with alternatingly blocked particle sources

    Full text link
    We analyze the predictions of an event-based corpuscular model for interference in the case of two-beam interference experiments in which the two sources are alternatingly blocked. We show that such experiments may be used to test specific predictions of the corpuscular model.Comment: FPP6 - Foundations of Probability and Physics 6, edited by A. Khrennikov et al., AIP Conference Proceeding

    Computer simulation of Wheeler's delayed choice experiment with photons

    Get PDF
    We present a computer simulation model of Wheeler's delayed choice experiment that is a one-to-one copy of an experiment reported recently (V. Jacques {\sl et al.}, Science 315, 966 (2007)). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not rely on any concept of quantum theory. Nevertheless, the simulation model reproduces the averages as obtained from the quantum theoretical description of Wheeler's delayed choice experiment. Our results prove that it is possible to give a particle-only description of Wheeler's delayed choice experiment which reproduces the averages calculated from quantum theory and which does not defy common sense.Comment: Europhysics Letters (in press

    Decoherence by a spin thermal bath: Role of the spin-spin interactions and initial state of the bath

    Get PDF
    We study the decoherence of two coupled spins that interact with a spin-bath environment. It is shown that the connectivity and the coupling strength between the spins in the environment are of crucial importance for the decoherence of the central system. For the anisotropic spin-bath, changing the connectivity or coupling strenghts changes the decoherence of the central system from Gaussian to exponential decay law. The initial state of the environment is shown to affect the decoherence process in a qualitatively significant manner.Comment: submitted to PR

    Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms

    Get PDF
    Inductive Logic Programming considers almost exclusively universally quantied theories. To add expressiveness, prenex conjunctive normal forms (PCNF) with existential variables should also be considered. ILP mostly uses learning with refinement operators. To extend refinement operators to PCNF, we should first do so with substitutions. However, applying a classic substitution to a PCNF with existential variables, one often obtains a generalization rather than a specialization. In this article we define substitutions that specialize a given PCNF and a weakly complete downward refinement operator. Moreover, we analyze the complexities of this operator in different types of languages and search spaces. In this way we lay a foundation for learning systems on PCNF. Based on this operator, we have implemented a simple learning system PCL on some type of PCNF.learning;PCNF;completeness;refinement;substitutions

    Corpuscular model of two-beam interference and double-slit experiments with single photons

    Get PDF
    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.Comment: Accepted for publication in J. Phys. Soc. Jpn

    Logical Hidden Markov Models

    Full text link
    Logical hidden Markov models (LOHMMs) upgrade traditional hidden Markov models to deal with sequences of structured symbols in the form of logical atoms, rather than flat characters. This note formally introduces LOHMMs and presents solutions to the three central inference problems for LOHMMs: evaluation, most likely hidden state sequence and parameter estimation. The resulting representation and algorithms are experimentally evaluated on problems from the domain of bioinformatics
    corecore